skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gajaria, Dhruv"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Relaxed retention (or volatile) spin-transfer torque RAM (STT-RAM) has been widely studied as a way to reduce STT-RAM's write energy and latency overheads. Given a relaxed retention time STT-RAM level one (L1) cache, we analyze the impacts of dynamic voltage and frequency scaling (DVFS)---a common optimization in modern processors---on STT-RAM L1 cache design. Our analysis reveals that, apart from the fact that different applications may require different retention times, the clock frequency, which is typically ignored in most STT-RAM studies, may also significantly impact applications' retention time needs. Based on our findings, we propose an asymmetric-retention core (ARC) design for multicore architectures. ARC features retention time heterogeneity to specialize STT-RAM retention times to applications' needs. We also propose a runtime prediction model to determine the best core on which to run an application, based on the applications' characteristics, their retention time requirements, and available DVFS settings. Results reveal that the proposed approach can reduce the average cache energy by 20.19% and overall processor energy by 7.66%, compared to a homogeneous STT-RAM cache design. 
    more » « less
  3. Prior studies have shown that the retention time of the non-volatile spin-transfer torque RAM (STT-RAM) can be relaxed in order to reduce STT-RAM's write energy and latency. However, since different applications may require different retention times, STT-RAM retention times must be critically explored to satisfy various applications' needs. This process can be challenging due to exploration overhead, and exacerbated by the fact that STT-RAM caches are emerging and are not readily available for design time exploration. This paper explores using known and easily obtainable statistics (e.g., SRAM statistics) to predict the appropriate STT-RAM retention times, in order to minimize exploration overhead. We propose an STT-RAM Cache Retention Time (SCART) model, which utilizes machine learning to enable design time or runtime prediction of right-provisioned STT-RAM retention times for latency or energy optimization. Experimental results show that, on average, SCART can reduce the latency and energy by 20.34% and 29.12%, respectively, compared to a homogeneous retention time while reducing the exploration overheads by 52.58% compared to prior work. 
    more » « less